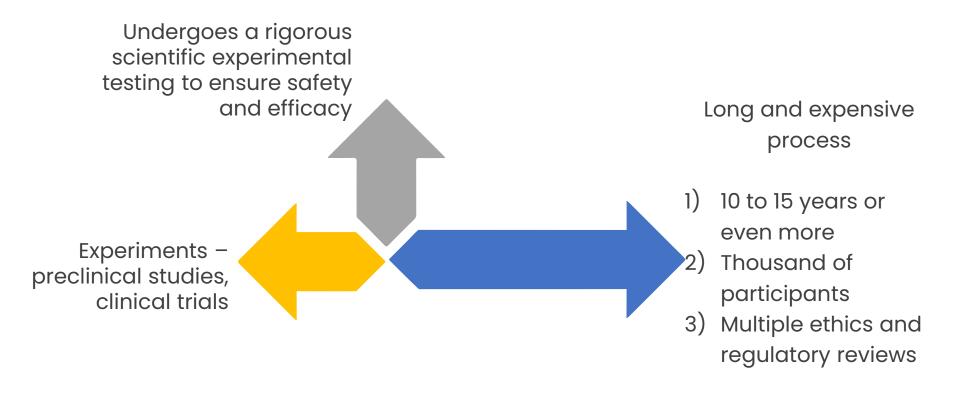
Ethics of Adaptive Trial Designs: What they are and what Research Ethics Committees (REC), Research regulators (UNCST, NDA) and research participants need to know

Dr. Victoria Nankabirwa

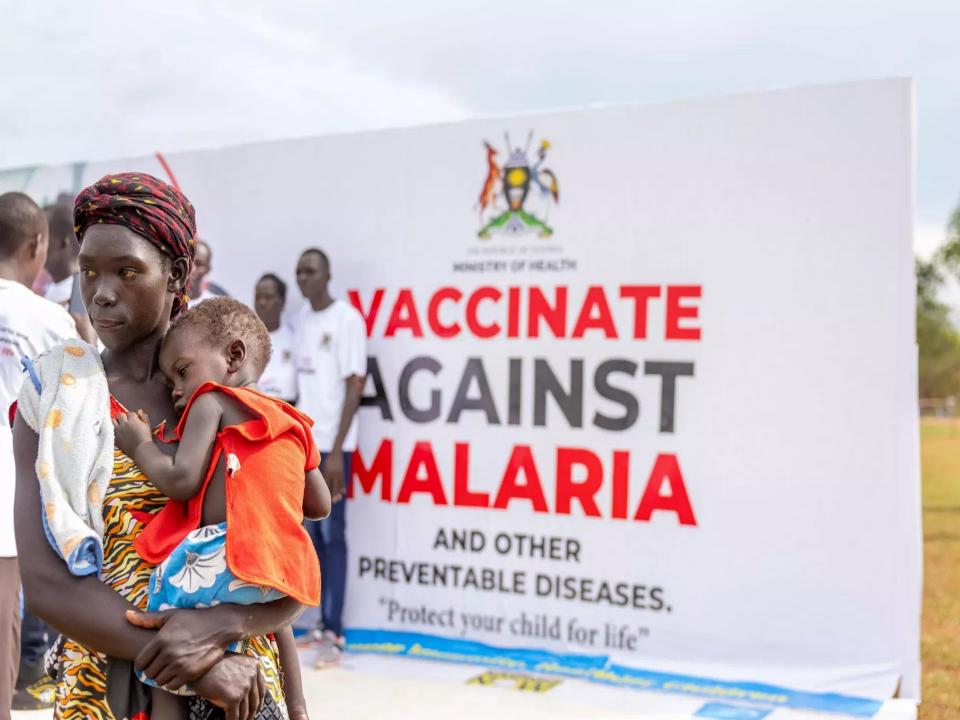
Makerere University

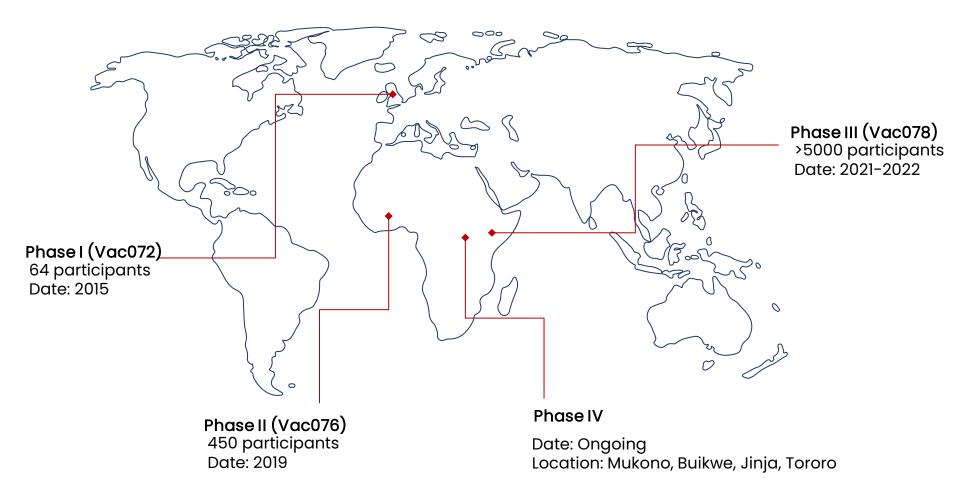

Acknowledgment: Prof. Noah Kiwanuka

Adaptive Clinical Trial Design: Definition

A study that includes opportunities to make modifications of one or more specified aspects of the study while the study is ongoing

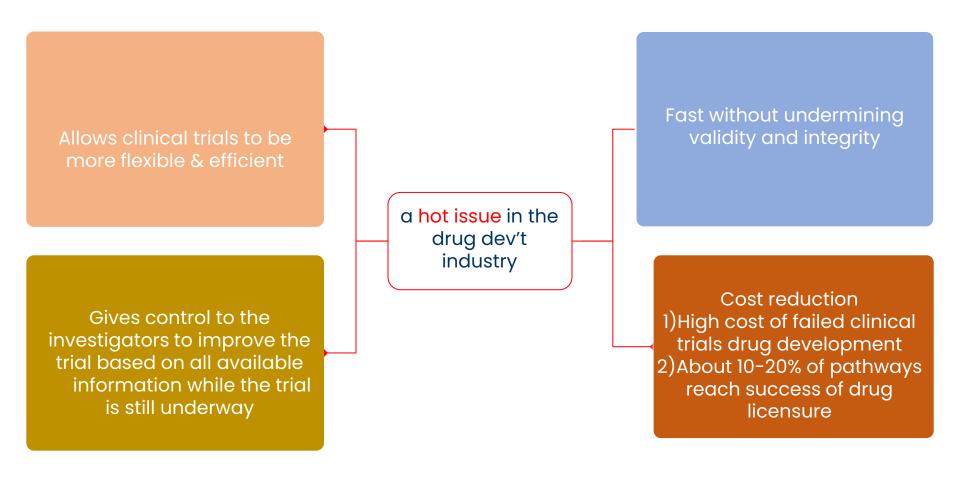
Before a medicine/vaccine/diagnostic assay/medical device is approved and licenced for use in human beings:




Clinical Trial Phases

	-clinical search	Phase 1	Phase 2	Phase III	Phase IV	
Objective	Pharmacodyna studies in anim		Drug disease interaction, efficacy of drug	Evaluate effectiveness and risk- benefit ratio	Monitor long term effects and effectiveness	
Sample size	In animal mode	els 20 to 80 individuals	20 to 80 individuals 100-500 individuals		1000+ individuals	
Duration	3-6 years	1-2 years	1-2 years	2-3 years	Ongoing	

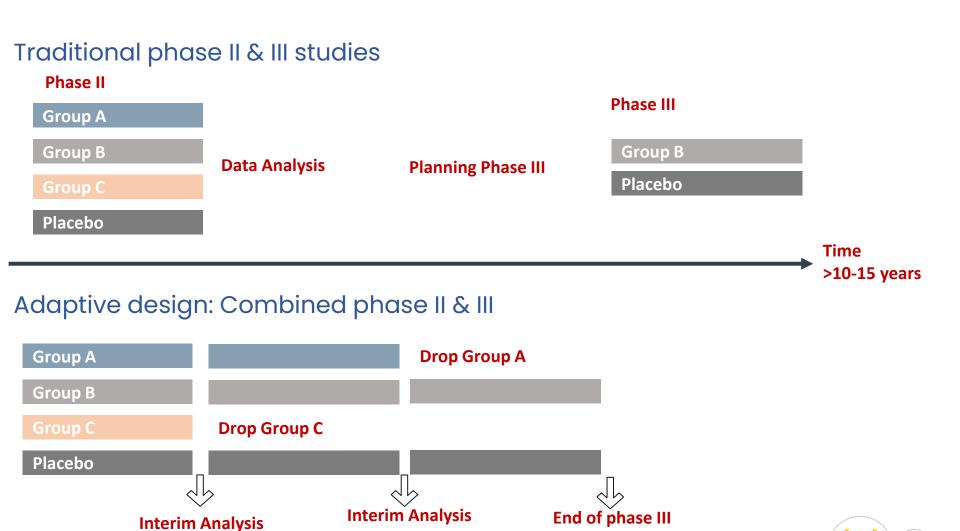
Rigorous scientific testing and multiple regulatory reviews

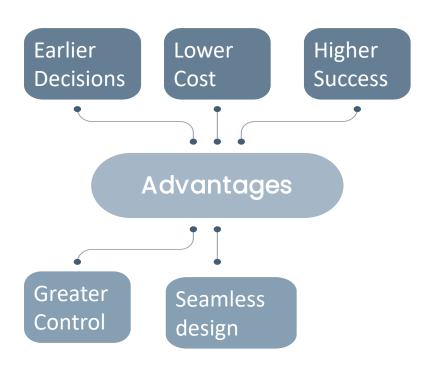

Clinical Trials to Assess the R21 Malaria Vaccine

1,000,000,000 USD

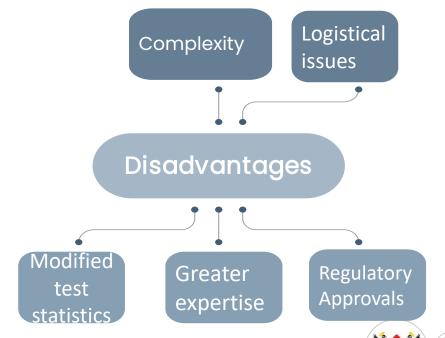
Rationale for Adaptive Clinical Trials

Traditional Clinical Trials


- Reject or fail to reject the null hypothesis in a well-defined population
- ≤3 study arms
- Standard phases (1-IV), clearly separated phase II & 3 & allows for little learning
- Standard statistical methods


Adaptive Clinical Trials

- Pre-specified modifications allowed based on interim analyses
- Many treatment arms
- Allows early detection / stop if warranted
- Different sets of risks and decision points



Adaptive Clinical Trial Designs: Seamless

Advantages of Adaptive Clinical Trial Designs

Disadvantages of Adaptive Clinical Trial Designs

Adaptations

An adaptation is referred to a modification or a change made to trial and/or statistical procedure during the conduct of a clinical trial

Types of adaptions:

- 1. Prospective adaptation
- 2. Concurrent adaptation
- 3. Retrospective adaptation

Prospective Adaptation

Pre-planned during the design of the trial before implementation

Typical changes in:

- Adaptive randomization
- Stopping a trial early due to safety, futility or efficacy at interim analysis
- 3) dropping the losers (or inferior treatment groups)
- 4) Sample size re-estimation etc

HOME / PROJECT NEWS / PRIME COMPLETES RECRUITMENT FOR A LARGE AFRICAN TRIAL ON PREVENTION OF TUBERCULOSIS IN NEONATES

ABOUT US

priMe completes recruitment for a large African trial on prevention of tuberculosis in neonates

Portrait of a happy mother and daughter enjoying a piggyback ride outdoors

For its pivotal phase III trial of the novel tuberculosis vaccine VPM1002, the <u>priMe</u> of project has completed recruitment of all participants. The priMe trial is a large, double-blind phase III

Concurrent Adaptations

 Generally, not pre-planned before start of the trial but their needs become apparent during the conduct of the trial

- Typical changes in:
 - Inclusion/exclusion criteria
 - Evaluability criteria
 - Dose/regimen and treatment duration
 - Changes in hypotheses and/or study endpoints
 - Etc.

STUDY PROTOCOL

Open Access

Efficacy of umbilical cord cleansing with a single application of 4% chlorhexidine for the prevention of newborn infections in Uganda: study protocol for a randomized controlled trial

Victoria Nankabirwa^{1,2*}, Thorkild Tylleskär², Josephine Tumuhamye², James K. Tumwine³, Grace Ndeezi³, José C. Martines² and Halvor Sommerfelt^{2,4}

ill. Severe illness is defined as illness that is associated with any of the following danger signs observed or verified by a study clinician: inability to feed or vomiting of all intake, lethargy or unconsciousness, severe lower chest in-drawing, axillary temperature of ≥37.5 °C or <35.5 °C, grunting, cyanosis, convulsions or a history of convulsions, and/or results in hospitalization and/or results in death. The data collection team records the presence or absence of omphalitis at each clinic visit. Signs for omphalitis include: pus, redness (inflammation) and swelling (edema) of the cord stump and the sur-

Retrospective adaptations

 Modifications and/or changes made to statistical analysis plan prior to database lock or unblinding of treatment codes

 In practice, prospective, ad hoc, and retrospective adaptations are implemented by study protocol, protocol amendments and regulatory reviewers' consensus

Types of Adaptive Designs

Multiple interim analyses Accrued data analysed at pre-	Adaptive randomization design	Group sequential design	Sample size re- estimation design		
Trial may be stopped for efficacy or futility,	Drop the loser design	Adaptive dose- finding design	Adaptive treatment- switching		
or it continues Need to account for multiple analyses	Hypothesis adaptive design	Adaptive seamless Phase II/III	Multi adaptive design		

METHODOLOGY

Open Access

Flexible trial design in practice - stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a multi-arm multi-stage randomized controlled trial

Matthew R Sydes^{1*}, Mahesh KB Parmar¹, Malcolm D Mason², Noel W Clarke³, Claire Amos¹, John Anderson⁴, Johann de Bono⁵, David P Dearnaley⁵, John Dwyer⁶, Charlene Green¹, Gordana Jovic¹, Alastair WS Ritchie¹, J Martin Russell⁷, Karen Sanders¹, George Thalmann⁸ and Nicholas D James⁹

Abstract

Background: Systemic Therapy for Advanced or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) is a randomized controlled trial that follows a novel multi-arm, multi-stage (MAMS) design. We describe

Multi Arm Multi Stage (MAMS) Trial

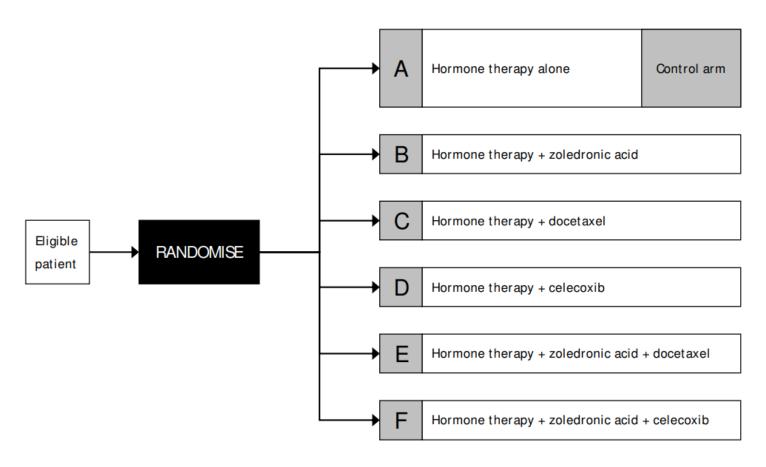


Table 2 Planned actions and timelines when accrual is stopped to trial arms

Action required	Timelines		
	Safety	LOB	
Notify sites in writing of IDMC meeting date to pre-warn	-28 d	-28 d	
Circulate prior letter from regulatory agency confirming that stopping early for LOB is not a substantial amendment, but part of trial design	-28 d	-28 d	
IDMC meeting	-7 d	-7 d	
IDMC notes and recommendations finalised	(<1 w)	(<1 w)	
TSC meeting: stop / continue decision for each research arm	Day 0	Day 0	
Turn off randomisation to arms stopping early for safety	<24 h	<1 w	
Notify centres by email; patients to ignore irrelevant parts of PIS	<24 h	<24 h	
Notify relevant industry partners	<24 h	<24 h	
Notify TMG members	<24 h	<24 h	
Alert trials unit staff to potential queries	<24 h	<48 h	
Phone all site Pls. Instructed to hand-amend PIS and CF. Updated documentation to follow	<1 w	<1 w	
Protocol and documents updated and agreed by TMG	<1 w	<1 w	
Summary information for patients	<2 w	<2 w	
Notify ethics committee and regulatory agency (for information only)	<2 w	<2 w	
Detailed discussions with industry partners	<1 m	<1 m	
TMG review of processes	<1 m	<1 m	

Key: LOB = lack-of-benefit; IDMC = lndependent Data Monitoring Committee; TSC = Trial Steering Committee; TMG = Trial Management Group; PIS = patient information sheet; CF = consent form; h = hour; w = week.

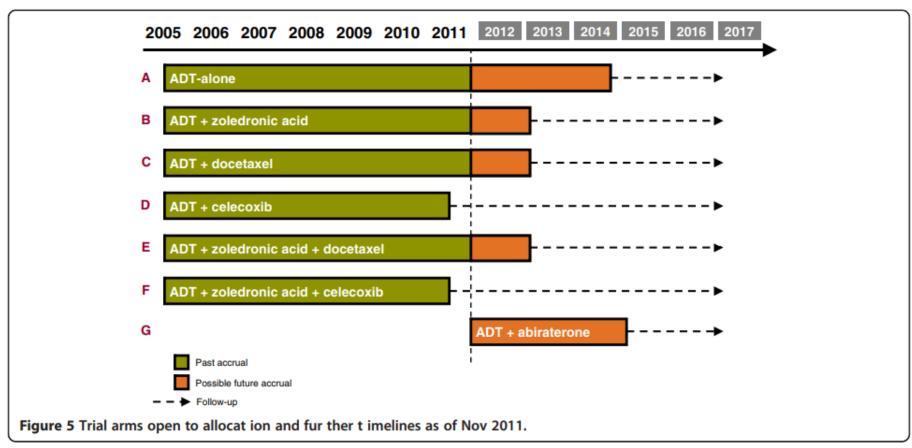
Note: the observed timelines broadly followed these plans.

Articles

Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial

Nicholas D James, Matthew R Sydes, Noel W Clarke, Malcolm D Mason, David P Dearnaley, Melissa R Spears, Alastair W S Ritchie, Christopher C Parker, J Martin Russell, Gerhardt Attard, Johann de Bono, William Cross, Rob J Jones, George Thalmann, Claire Amos, David Matheson, Robin Millman, Mymoona Alzouebi, Sharon Beesley, Alison J Birtle, Susannah Brock, Richard Cathomas, Prabir Chakraborti, Simon Chowdhury, Audrey Cook, Tony Elliott, Joanna Gale, Stephanie Gibbs, John D Graham, John Hetherington, Robert Hughes, Robert Laing, Fiona McKinna, Duncan B McLaren, Joe M O'Sullivan, Omi Parikh, Clive Peedell, Andrew Protheroe, Angus J Robinson, Narayanan Srihari, Rajaguru Srinivasan, John Staffurth, Santhanam Sundar, Shaun Tolan, David Tsang, John Wagstaff, Mahesh K B Parmar, for the STAMPEDE investigators*

Summary

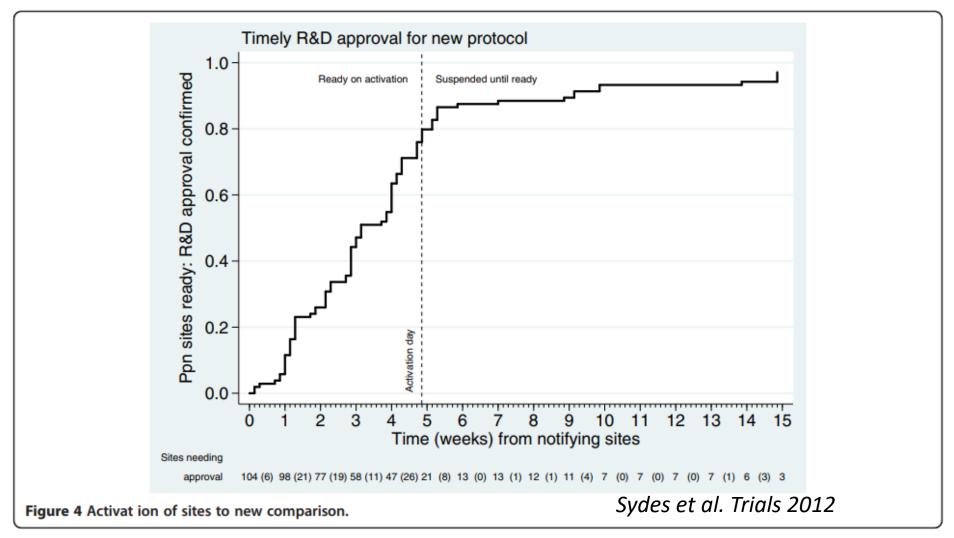

Background Long-term hormone therapy has been the standard of care for advanced prostate cancer since the 1940s. STAMPEDE is a randomised controlled trial using a multiarm, multistage platform design. It recruits men with high-risk, locally advanced, metastatic or recurrent prostate cancer who are starting first-line long-term hormone therapy. We report primary survival results for three research comparisons testing the addition of zoledronic acid, docetaxel,

Lancet 2016; 387: 1163-77 Published Online December 21, 2015 http://dx.doi.org/10.1016/

50140-6736(15)01037-5

James DN et al. Lancet 2016

Sydes et al. Trials 2012



Management of Early Stopping

- Early stopping written into the protocol
- Notifications to RECs made although no immediate protocol amendment would be required
- Protocols updated as soon as practicable after changes to study arms to simplify activities for sites
- The Patient Information Sheets (PIS) would be updated immediately with removal of information that was no longer pertinent and sent to the ethics committee(s) for information

Changes in Treatments: Regulator Responses

Issues Regulators (REC, NDA, UNCST) Need to Focus On (I)

- Purpose of adaptation
 - To enhance the trial and NOT to remedy inadequacies in planning
- Area of adaptation
 - Not all adaptations may be appropriate for every trial.
 Carefully consider which aspects can be "adaptive"
- Justification of adaptations
 - Must be scientifically justifiable and as much as possible prospectively planned and based on analysis of unblinded data

Issues Regulators (REC, NDA, UNCST) Need to Focus On (II)

Indicators of adaptation and focus areas

- Should be clearly stated, including their implications on the trial outcomes/endpoints
- Application of adaptive designs may result in a totally different trial that is unable to address the intended scientific/medical questions/hypothesis due to major differences in;
 - Actual trial population versus the original target population
 - Trial power and hypotheses tested and associated confidence intervals and or p-values
 - Trial endpoints/outcomes and their ascertainment and analysis before and after the adaptation

Table 1 Design parameters by trial stage for original research arms

Trial Stage		Type	Primary outcome measure	Target hazard ratio		Power	One-sided ificance leve	Critical HR	Trigger events ¹ (control)
1		Activity	FFS		0.75	95%	0.500	1.00	114
2		Activity	FFS		0.75	95%	0.250	0.92	215
3		Activity	FFS		0.75	95%	0.100	0.89	334
4		Efficacy	OS		0.75	90%	0.025	-	400
Overall		-	-		-	83%	0.013	-	-

¹ Number of control arm events provoking analyses for the original research comparisons with a 2:1 allocation ratio in favour of control. The required number of events would be different for an equal allocation ratio.

Key: FFS = failure-free survival; OS = overall survival; HR = hazard ratio.

Note: these parameters are used for each pairwise comparison of research vs control.

Issues Regulators (REC, NDA, UNCST) Need to Focus On (III)

- Study population post-adaptation
 - Do/does the pre-adaptation study population in the remaining trial groups contribute to final analysis?
 - Are the pre-adaptation study population in the dropped trial groups eligible for enrolment in the retained groups?
 - Does the adaptation scientifically justify change in the study population?
- Study design
 - Does the adaptation lead to a new design or new trial phase?
 - If a new trial phase is needed, is the a priori go-no-go criteria satisfied? (safety + intended effect)

Issues Regulators (REC, NDA, UNCST) Need to Focus On: (IV)

• Study outcome:

 Is the primary outcome changing or getting modified? If yes, why and what is the impact on sample size, power and trial results?

Sample size and power:

 Original estimated SS & power; a priori interim analyses and their adjustments on SS & power; post-adaptation SS & power; final analysis SS & power

REC approval for each adaptation

 Each should be preceded by a presentation to the REC and approval. No blanket approval of all adaptations without returning to the REC for individual adaptation approval!

Thank You!

Makerere University College of Health Sciences School of Public Health

P.O.Box 7072 Kampala, Uganda

Tel: 256-414-543872 | Email: dean@musph.ac.ug

https://sph.mak.ac.ug/